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Open innovation contests have been incredibly successful at producing creative designs and solutions.
While participants compete for prizes in these contests, over half of contests conducted on online
platforms allow participants to share ideas during contests, for benefits such as individual learning,
community building, and cumulative innovation. Such sharing, however, is at tension with the
competitive nature of crowd contests. To understand this tension, this study investigates community-
level sharing of code on Kaggle, a contest platform for predictive modeling. Analyzing data on 25
contests in 2015 and 2016, we find that 10% of users shared code during contests, that participants
doing medium well in the contest were the most likely to share code, and that sharing code improved
individual, but not collective performance. These findings allow us to contribute insights about the
participants, conditions, processes, and outcomes of community-level collaboration to both research
on and design of open innovation contests.
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1 INTRODUCTION

Contests have become a successful way organizations engage crowds to create innovative
solutions to organizational problems. Early contests, such as the Netflix Prize, were organized
and hosted by individual organizations. Now, many take place on specialized platforms
which have emerged to host contests in specific areas, such as InnoCentive (R&D), TopCoder
(programming), Dell’s IdeaStorm (idea generation), and Kaggle (analytics and predictive
modeling). Contests on these platforms are sponsored by a mix of individual companies,
public organizations, and nonprofit organizations [9]. These contest platforms can provide
organizations with easier access to knowledge and expertise outside their organizational
boundaries, taking advantage of open innovation [10, 22].
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From an organizational perspective, open innovation contests lower the costs associated
with maintaining internal expertise, both minimizing the risks associated with R&D and
broadening the pool of available knowledge and solutions. From an individual perspective,
open innovation contests offer monetary prizes, professional recognition, learning opportuni-
ties, and challenging problems.

The Netflix Prize was one early and influential innovation contest. In October 2006 Netflix
released a large data set of customer reviews for movies and challenged the data science
community to beat its in-house recommendation system by at least 10%. The winner with
the best performing algorithm above this threshold was promised a million dollar prize.
By June 2007, two thousand teams submitted solutions; many performed better than the
internal system, though none reached the contest’s 10% improvement goal [5]. Three years
later, two teams finally met the target; the competition was declared a success; and the
prize was awarded to one of the winning teams [4].

Research on open innovation contests has primarily focused on modeling individual
competitive behavior and the design elements needed to make contests popular and successful
[2, 3, 12, 28]. However, the nature of open innovation contests—strict time limits, complex
tasks, and an emphasis on innovation—-makes teamwork and collaboration advantageous
[12]. In fact, though open innovation contests tend to emphasize the competitive aspects of
contests, more than half provide avenues for collaboration through discussion and sharing
ideas among contestants [9]. In the case of the Netflix Prize, competing teams shared code,
data, and insights about the data, explained their algorithmic approaches, and combined
their algorithms [5]. Early notable breakthroughs in algorithms were adopted by later teams
and then later teams developed hybrid algorithms that combined multiple approaches. One
of the teams tied for first place three years later, “The Ensemble”, was an aggregation of 23
teams from earlier rounds who had merged their algorithms and their work [4].

Hybrid contest platforms that establish a competitive environment among participants
while also providing opportunities for collaboration through sharing ideas, partial results,
and feedback may be ideal [8]. Open innovation contests have been incredibly successful at
producing creative designs and solutions to difficult problems, because individuals from a
large crowd compete to identify the optimal solution (e.g. [20]). From foundational work on
open collaboration and online communities, we know that open, large-scale collaborations
can create impressive artifacts and innovations [14, 27]. However, on hybrid contest platforms
community-level collaboration is at tension with the competitive nature of the crowd contests.
While the competitive aspects of these platforms have been studied in detail [1], we do not
know as much about how collaboration unfolds on these sites.

The contribution of this paper is to understand whether collaboration can thrive in innova-
tion contests, which are highly competitive, zero-sum games. We investigate community-level
collaboration in 25 contests on one site, Kaggle—an online innovation contest platform for
analytics and predictive modeling. On Kaggle, participants compete for monetary prizes,
reputation points, and sometimes job opportunities. Kaggle also allows participants to share
code during contests. We ask four exploratory questions to help understand collaboration:
who shares code; how the design of a contest affects code sharing; whether code sharing
impacts individual and collective performance; and how code evolves over time during these
contests. These questions address three major objectives: 1) whether the nature of compe-
tition and the specifics of contest design inhibit individual participation in collaboration,
2) whether collaboration offers individual and/or collective benefits as would be expected
from the open innovation literature and 3) whether collaboration follows patterns expected
from studies of cummulative innovation. To date the vast majority of studies of innovation
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contests have focused on competition and performance and have ignored community-level
collaboration. There are a few exceptions which offer preliminary findings each focusing on a
single contest. [9, 15, 19] are primarily qualitative and exploratory, while [8] is experimental
and quantitative, but studied collaboration in a contest in which participants were not given
the option to keep work secret. The current study complements and extends these studies by
taking a quantitative approach to studying collaboration and studying many more contests.
Understanding collaboration in innovation contests is important because innovation contests
may provide better experiences to participants and better outcomes to host organizations
when contests cultivate both collaboration and competition rather than purely supporting
competition.

2 RELATED WORK

Innovation contests are a historically important R&D strategy that have elicited innovations
ranging from incremental improvements to radical breakthroughs [1]. To date, over two
hundred academic publications have conducted research on innovation contests, a majority
focusing on online innovation contests using the crowd [1]. We summarize the relevant
literature on innovation contests and related crowdsourcing initiatives as it pertains to
collaboration, motivation, and contest design.

2.1 Collaboration in Innovation Contests

There are two types of collaborations in innovation contests: within-team collaboration and
community-wide collaboration. Teams were found to outperform individuals in contests on
Kaggle [33], presumably because team members were able to collaborate within their team.
Dissanayake and colleagues [12] found that teams on Kaggle composed of skilled members
and with leaders socially connected to the community did better than other teams.

A few papers have directly investigated community-level collaboration on innovation
contest platforms. They found that some individuals chose to collaborate and compete
while others only competed. Researchers analyzing comments from an online German
design contest [9] identified two distinct sets of users, ones which did not collaborate and
another set which did. They further conducted focus groups among participants, identifying
several reasons for collaboration including curiosity, a desire to recognize good work done
by others, and a desire to help individuals who were not doing well. More strategically,
participants reported collaborating to learn from others, to reconsider their own work in
light of others’ ideas, and to integrate ideas from other contestants. Participants who did
not collaborate reported having a clear idea of what they were trying to accomplish. They
ignored external discussion to focus on their own idea. Similarly, Hutter and colleagues
[19] analyzed the content and network structure of comments among contestants in an
online design competition, finding that contestants engaged in a variety of strategies, some
exclusively competitive, some exclusively cooperative, and some a combination of the two. In
a jewelry design contest, participants provided each other with thousands of peer-evaluations
and comments, presumably creating a sense of community [15]. A follow-up survey revealed
that those users who felt the strongest sense of community also reported having the best
experience.

Community-level collaboration was found to be associated with better collective per-
formance in one experiment. Boudreau and Lakhani [8] conducted a field experiment on
TopCoder, a crowd programming contest platform. They experimentally compared outcomes
for two contest designs, a purely competitive design in which no code sharing was allowed
and an open design in which all submitted code was made publicly available during the
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contest. The crowd in the open design condition produced better performing code, although
fewer people participated. The crowd was able to do better with an open design because they
learned from each other, with the most successful ideas spreading throughout the crowd. In
addition, they were able to build on each others’ work in a process known as cumulative
innovation.

These few papers suggest collaboration is beneficial in innovation contests, whether it
occurs within a team or at a community level, however only some individuals choose to
collaborate. More research is needed to understand who collaborates, under what conditions,
and how collaboration unfolds. In addition, collectively this limited set of papers has only
studied community-level collaboration in a few innovation contests.

2.2 Open Collaboration

Related work from online communities and crowdsourcing also addresses the value of
large-scale collaboration and the trade-offs associated with combining collaboration and
competition. Literature on open collaboration suggests that one of the main advantages
of online communities is their ability to create knowledge collaboratively [13]. In these
communities, participants openly reveal their knowledge and expertise and work together
[27]. Through collaboration ideas are refined, integrated, and recombined in complex ways
fueling innovation. Combining and recombining design ideas generated by the crowd increases
the creativity of the designs [30]. Large-scale collaboration may be especially important in
promoting creativity through cumulative innovation.

Other types of crowdsourcing initiatives such as the Stack Exchange Q&A platform
(e.g. Stack Overflow) also combine competition and collaboration. Researchers find that
collaboration happens at a low but meaningful level on these platforms and improves
performance where it occurs [21, 25]. Collaboration may not be as prevalent as it could be
on these platforms because of the competitive nature of these Q&A communities. When the
researchers compared similar types of posts on Stack Overflow and a discussion mailing list,
they found more collaboration on the mailing list [31]. They argue that Stack Overflow is
less collaborative than mailing lists because it uses a reputation system, in which individuals
can compete to win points, incentivizing non-collaborative behaviors.

This stream of research suggests that collaboration is beneficial, but that competition
may reduce the frequency of substantive, valuable collaboration. This research has been
conducted on other types of online platforms with different community structures, but may
be applicable to innovation contests.

2.3 Motivation

Individuals who participate in crowdsourcing initiatives and, in particular, innovation contests
are motivated by both intrinsic and extrinsic incentives. Zheng and colleagues [32] found that
both intrinsic incentives, such as enjoyment, curiosity and personal challenge, and extrinsic
incentives, such as earning money and gaining reputation, were important in motivating
participation on Tasken.com, a Chinese crowdsourcing platform. Similarly, Yu and colleagues
[29] found that intrinsic motivations in the form of social motivations and learning were just
as useful for motivating crowd work as the monetary compensation offered in an experiment
run on Amazon’s Mechanical Turk. Boons and colleagues [6] found that being proud to
belong to the crowdsourcing community, a social and intrinsic motivation, was related to
greater engagement on an innovation contest platform. In fact, intrinsic incentives may be
slightly more important than extrinsic incentives on these platforms [32].
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Although, researchers find evidence that both intrinsic and extrinsic motivation encourages
participation in crowd contests, previous research in other contexts suggest that intrinsic
and extrinsic motivations can sometimes be at odds with one another. Deci and colleagues
[11] found that adding extrinsic incentives can reduce intrinsic motivation previously associ-
ated with a task. In several experiments combining intrinsic and extrinsic incentives on a
crowdsourcing platform, researchers found that some types of extrinsic incentives undercut
intrinsic incentives while others did not [29]. The researchers argued that extrinsic and
intrinsic incentives can be combined synergistically as long as they are carefully designed to
have non-conflicting goals. In line with this argument, Rogstadius and colleagues [24] found
that they were able to combine intrinsic and extrinsic motivators to increase the quality of
crowd work.

The benefits of community-level collaboration are primarily intrinsic, such as learning,
helping others, and feeling part of a community, while the benefits of competition are
primarily extrinsic, such as building a reputation and winning prizes. This stream of research
suggests that depending on the specific nature of the incentives extrinsic incentives may or
may not weaken intrinsic incentives. Contest design as well as an individual’s position within
the community may affect the nature of these incentives, thus affecting whether extrinsic
incentives weaken intrinsic incentives, and ultimately affecting whether or not individuals
are motivated to collaborate.

2.4 Contest Design

In 2009, Bullinger and colleagues [9] investigated 69 open innovation contests and identified
common design differences between contests. Major differences included different types
of sponsoring organizations, different contest durations, different types of rewards offered
to participants, and whether participants competed as individuals or as teams. A few
researchers have investigated how some differences in design contests affect participation
and performance. Yang and colleagues [28] found that specific contest design elements did
affect the number of participants and the proportion who submitted final work. They found
that contests obtained more submissions when they had longer durations and were not as
complex. When contests had higher monetary rewards more people entered the contest, but
fewer submitted final work.

This stream of research suggests that contest design has a significant impact on participants’
behavior during contests. However, these studies have only examined how contest design
affects the rate at which individuals participate (e.g. make submissions) and how they
perform. To date no research has examined how contest design affects whether or not
individuals collaborate during a contest.

2.5 Summary

In summary, community-level collaboration has not been studied extensively in innovation
contests. First, the few studies that have examined this type of collaboration in innovation
contests suggest that collaboration is beneficial but these studies did not investigate the
participants, conditions, and processes of such community-level collaboration. Second, work
on other types of online platforms suggests that community-level collaboration may be
beneficial but may be dampened by competition, a pattern that has not yet been examined in
innovation contests. Third, research on motivation shows that intrinsic motivations associated
with collaboration and extrinsic motivations associated with competition can sometimes be
at odds on open innovation platforms, but this research stream is inconclusive as to whether
competition weakens collaboration. Lastly, research on contest design reveals that specific
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configurations of intrinsic and extrinsic incentives influence participation and performance,
but has not yet examined the effects of contest design on collaboration at the community
level.

The current study examines community-level collaboration in open innovation contests,
addressing this knowledge gap while extending and complementing all four streams of
research mentioned above. Foremost, this study adds to the few studies on collaboration in
innovation contests by examining the participants, conditions, and processes of collaboration.
Also, this study’s framing of user behavior in terms of a competitive-collaborative tension in
innovation contests enriches extant research on collaboration in open innovation platforms.
Further, this study demonstrates which contest design features affect collaboration despite
the competitive nature of innovation contests, contributing new insights to research both on
motivation and on contest design.

3 CURRENT STUDY

We investigated community-level collaboration on Kaggle, an online, open innovation contest
platform. On Kaggle, participants compete with each other in analytics and predictive
modeling contests, either as individuals or in small teams. In the spring of 2015, Kaggle
introduced a new feature which allowed individuals to openly share code with the community
as they worked on a contest. Shared code can be executed, modified, and submitted as a
solution to a contest. These features of platform and contest design allow us to investigate
the tension between competition and collaboration in open innovation contests. In this study,
we specifically analyzed code sharing in 25 contests from 2015 to 2016 and addressed four
exploratory research questions to help understand community-level collaboration.

3.1 Research Question 1: Who shares code?

Unlike collaboration within teams on Kaggle, in which cooperation and competition work
in concert, community-level collaboration through code sharing pits cooperation against
competition. When participants openly share code, they are sacrificing the advantages of
keeping their work secret. When sharing and secrecy point to different advantages, a tension
develops between cooperation and competition, and between sharing and secrecy [26]. By
sharing code individuals may benefit from getting feedback, having others improve their code,
learning through co-creation, helping others, and feeling part of a community [9, 15]. By
keeping code secret individuals may benefit from performing better relative to others which
may lead to higher rankings on leaderboards, winning prize money, and job opportunities.

Individual differences are likely to affect the trade-off between sharing and secrecy. We
expected that the advantages of secrecy would be greatest for individuals who were performing
better on the site and within a contest. More skilled contestants prefer competition over
cooperation [7]; skilled contestants have the most to gain from secrecy because they have
a higher chance of winning prize money and being recognized on leaderboards. We also
expected that individuals who had fewer opportunities to collaborate within a team, because
they were working alone or in a smaller team, would be more likely to share code because
they would have more to gain from collaborating with the community at large. We evaluated
the effects of individual performance (site-wide and contest-specific) and team membership
on the likelihood of an individual to share code.

3.2 Research Question 2: How does the design of contests affect code sharing?

Open innovation contests vary in their designs, such as whether they allow teams to compete
[9]. We investigated whether four design parameters—the size of the monetary reward, whether
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team size was restricted, the complexity of the problem, and the length of the competition—
affected the amount of code sharing. Situational conditions can affect the trade-off between
sharing and secrecy [26]. We predicted that as individual short-term extrinsic incentives
increased (e.g. size of the reward) there would be less code sharing because there would be a
greater advantage of secrecy. On the other hand, as it becomes more difficult to compete
individually or as a small team (e.g. more complex problem, restricted team size, shorter
contest time) there would be more code sharing because of the greater advantages of sharing
and collaborating.

3.3 Research Question 3: Does code sharing affect individual and collective
performance in contests?

Previous research suggests that community-level collaboration is individually and collectively
advantageous. Many of the top contestants in two open innovation contests studied had
participated in community-level discussions of design ideas [9, 19]. Individuals can benefit
from sharing code in the short term, by gaining valuable feedback, borrowing ideas from others,
and combining others’s ideas with their own, and in the long term by learning from others’s
expertise and from the co-creation process that happens when individuals work together
to develop code. Widespread sharing of code can enable cumulative innovation, in which
individuals improve, combine, integrate and build on each others work collaboratively. Code
sharing has been associated with improved collective performance in an online programming
contest; there was improvement in both the average and top solutions [8]. We investigated
how sharing code affected individual and collective performance.

3.4 Research Question 4: What code gets modified?

One of the most important potential benefits of community-level collaboration through
sharing code is that it might enable cumulative innovation, in which code is improved,
combined, and built upon by the community at large. One way researchers have studied
cumulative innovation is by examining changes in innovation networks over time, such as
growth of patent citation networks. We applied findings from one such study by Podolny
and Stuart [23] to see if we saw similar patterns on Kaggle. We translated the findings for
patent citations networks to code branch networks to understand what code was modified
on Kaggle.

In examining patents, Podolny and Stuart [23] found that areas of innovation that were
seen as more legitimate attracted more attention, driving more innovation in these areas.
They also found that individuals used patent author reputation as a measure of legitimacy.
One way users may evaluate the legitimacy of code on Kaggle is by examining who wrote the
code or by examining how other community members rated the code. Thus, we predicted
that code that was written by a highly-ranked participant and/or given a higher community
rating would be seen as more legitimate and would attract more modification.

Podolny and Stuart [23] also found that some areas of innovation attracted more innovation
simply because more individuals came across them. If individuals only explore a limited
search space starting from where they are familiar, they may only uncover and be inspired by
nearby innovations. On Kaggle we suspected that code that was easier to understand because
it used familiar libraries, functions, and approaches might be more accessible than code that
was more distinctive and unique. We predicted that code that was more prototypical, in
that it was more similar to other code that had been shared previously, would attract more
modification. We made this prediction because we believed that prototypical code would be
explored first by more people because it was more familiar.
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Finally, Podolny and Stuart [23] found that areas of innovation that were already heavily
exploited were less likely to grow. Areas that are heavily exploited have less potential
for new innovation. We expected to find a conceptually analogous pattern on Kaggle. We
suspected that code that had only produced minor modifications had less potential for further
exploitation than code that had produced a diverse set of modifications. Thus, we predicted
that code that had only produced minor modifications would be less likely to attract further
modification. This fourth research question is important for two reasons. First, by tracking
how code evolves it describes how collaboration unfolds. Second, by comparing how code
evolves on Kaggle to how patent citation networks grow it tests whether collaboration on
Kaggle is similar to collaboration in other cumulative innovation settings.

4 METHOD
4.1 Description of Site

Kaggle describes itself as a platform for data scientists and data enthusiasts. The platform
organizes programming contests, in which the crowd competes, individually or in teams, to
solve predictive modeling and analytics problems. However, Kaggle also supports a variety
of other avenues for data scientists to discuss and collaborate on data analytics, including
hosting discussions on open data sets, code repositories, discussion forums, and practice
problems. The platform serves several different functions: providing organizations with access
to data scientists and the solutions they create, providing real-world problems and data sets
to data scientists working to advance machine learning, providing a learning environment in
which users can become more skilled at machine learning, and allowing companies to recruit
from a pool of talented data scientists.

Kaggle regularly hosts contests sponsored by external organizations such as Google, Intel,
and the Nature Conservancy. For each contest the crowd is provided a description of the
problem, a public data set, and a set of evaluation criteria. Contests are time-limited, running
anywhere from a few weeks to a few months. Contests award prizes to the participants
with the best performing solutions. In our data from 25 contests all prizes were monetary.
Different contests have different rules (e.g. some restrict team size). Contestants typically
submit multiple solutions over the course of the contest, although they may be limited to one
submission per day. Contestants are ranked based on the performance of their best submission.
Rankings are displayed publicly on a leaderboard during contests. Individuals earn points for
their performance in contests. Kaggle allots points' according to the following formula, which
penalizes individuals who compete on teams with more teammates (individuals competing
alone are considered to have a team size of 1) and rewards individuals with higher rankings
when there are more total teams competing (individuals competing alone are each counted
as their own team):

100000
\ Nteamsize

Points from contests accumulate over time and are used to rank individuals on the site. For
site-wide rankings, Kaggle applies a decay function (e%) so that points in more recent
contests count for more.

In April 2015 Kaggle released a new feature called kernels (originally called scripts). This
feature allowed users to run code directly on Kaggle and to share code publicly with others.
Kaggle allowed code in a few commonly used languages: R, Python, Julia, and SQLite. Users

x Rank™ %™ x log10(1 + log10(Nteams))

Thttps://www.kaggle.com/progression
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could browse code related to a contest; and rate, modify, and comment on the code (Figure

1).
4.2 Code Sharing

Users tend to share three main types of code: solutions to the prediction problem, code
that helps individuals understand the data better, and helper code that makes other code
easier to implement. For example, in response to the West Nile Virus contest, in which users
were tasked with predicting when and where in the city of Chicago mosquitoes would test
positive for West Nile Virus, one user shared code that applied a random forest algorithm
to solve the prediction problem (“Beating the Benchmark ;) (0.714)”) while another user
shared code that applied logistic regression (“Starter Logistic Regression in R”). This type
of code can be directly submitted to the contest or modified and then submitted. Users also
share code that helps them understand the data better. Understanding the data is important
for developing a good solution and fine tuning the performance of predictive models. For
example, one user developed and shared code that visualized the locations in Chicago where
mosquitoes tested positive for West Nile Virus (“West Nile heat map”), while another user
shared code that outputted descriptive statistics for the most relevant variables (“Exploring
features”). Finally, helper code makes other code easier to write or more efficient, a user
shared code that converted the data from a dense to a sparse representation reducing the
amount of memory that was needed to run other code on the data (“Using 10x less RAM”).

Modifications to shared code are often minor tweaks, but also involve incremental improve-
ments to boost performance. Common ways that individuals improve on solutions is to add
feature selection (“RandomForestClassifier Minus a Few”, “XGBoost after feature pruning”)
or to tune parameters (“XGBoost parameter tuning with GridCV”). These modifications do
not change the main algorithms underlying the predictive model, but can boost performance,
and often make a difference in terms of scores given to final solutions.

4.3 Description of Data

Kaggle made a subset of its data publicly available as a downloadable database® on July 20,
2016. Almost all contests up to July 2016 are included in this data set with a few exceptions.
Contests that focused on recruitment were not present (N = 16, with one exception). Contests
that were limited to only certain types of participants, such as students in an online course,
higher ranked users only (masters level), or invitation only, were not present in this data set
(N =28).

4.3.1 Inclusion Criteria. Kaggle only gives participants points for performance in some
types of contests. In particular, they exclude contests designated as “getting started”,
“playgroup”, or “in class”. We applied a similar criteria in analyzing the data. We excluded
these contests from point calculations and analyses, which left 150 contests that were
considered in point calculations. All our analyses focused on contests that supported kernels
for the majority of each contest. Among the 150 remaining contests, 25 contests from 2015
to 2016 occurred after Kaggle introduced code sharing as a feature and thus these contests
were included in our subsequent analyses.

4.3.2 Metrics and Variables. All of our analyses focused on how much novel and modified
code participants shared in a contest. We focused on sharing rather than using shared
code, because the data provided by Kaggle did not provide good enough records of how

2https://www.kaggle.com /kaggle/meta-kaggle
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Fig. 1. Kaggle provides a list of shared kernels visible to the community for each contest; an example
of part of a list is featured in the upper panel of the figure. Participants can display, execute, and fork
shared kernels; a screenshot in the lower panel shows how code is displayed to participants.

code was used. For many of our analyses we examined how behavior in the first half of a
contest affected behavior in the second half of the contest®. Within the limitations of an
observational study this allowed us to partially control for the directionality of effects. We
chose to divide contests in half based on duration because duration is invariant to user
behavior; it provides the largest time intervals to observe early and late behavior; and it is a
typical method used in studying changes over time in work groups (e.g. [16]).

Participant Variables. We limited analyses to users who had submitted in at least one
contest. For each participant we calculated the cumulative number of site points they had
earned on the site at the beginning of each contest. We used Kaggle’s formula to calculate
points per contest (see Description of Site), but chose to aggregate across contests without
applying a decay function. Instead, we controlled for how long users had been active on the
site by recording the total number of contests a user had competed in at the time of the
contest and including it as a covariate in our models. For each contest, we also recorded the
size of the team a user was competing with (team size); the number of points earned in
the first and second half of the contest (contest points); and whether they shared code
in the first and/or second half of the contest (see Kernel Variables). Where relevant we
controlled for whether they submitted code in the first half of the contest.

Contest Variables. Contests differed in their designs and user behavior. In terms of their
design we recorded whether a contest restricted the size of teams (restricted teams), the
total amount of money offered to prize winners (reward quantity), the complexity of
the problem as operationalized as the number of bytes of data that had to be analyzed

3The first and second half of the contest were defined to divide the duration from the start to the end of the

contest equally. Typically more activity was present in the second half of a contest, but both were active
periods.
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Fig. 2. Examples of kernels that were shared and then expanded into branches by others forking the
novel code. Large red nodes represent novel code, edges connect novel code to forked code, forked code
is represented by small black nodes.

(data size), and the number of days given to submit a solution (contest length). For each
contest we also recorded the percent of users who shared code and the total number
of modifications made to shared code (number of forks) as measures of community-level
collaboration. We measured collective performance in two ways, by calculating the percentage
improvement in the the maximum and the median scores from a contest’s midpoint to its
end (% improvement in top and median solutions). Where relevant we controlled for
the total number of participants who submitted solutions to a contest.

Kernel Variables. Users shared code by creating kernels. For each kernel we have a record
of the time when the code was shared, the code itself, the user who shared it, its revision
history, and a list of votes. We distinguished between three types of shared code: novel code
(bases), modifications of novel code written by others (forks), and non-modified copies of
novel code (omitted from calculations and analyses). For the fourth research question we
only examined bases that had been created in the first half of a contest. For these bases, we
recorded the kernel author’s site points at the start of the contest, the kernel author’s
contest points at the midpoint of the contest, and the total number of votes a kernel had
received up until the midpoint of the contest'(community rating).

For the fourth research question we divided code into branch families, that is a base and
all of its forks (Figure 2). For each base created in the first half of a contest we measured
whether a base had received any forks in the second half of the contest (kernel forked). For
some models we controlled for the total number of forks created in the first half of contest
(branch size).

Based on methods from natural language processing, we calculated the average distance
between a base in the contest and all other bases in previous contests’ (code base distance),
providing a measure of how (dis)similar a kernel was to the established code base. We also
calculated the average distance between a base and its forks created in the first half of
the contest (branch distance). To calculate these distances, we treat the code of each
kernel as a document. We then tokenized the entire corpus of kernels into words weighted

4To remove interdependencies in the data we excluded votes given by users who went on to modify the
kernel. Thus community rating only included the rating by community members who did not modify the
base kernel.

5We limited comparison to previous bases to bases in our set of 25 contests as these were the primary
contests that allowed kernels and therefore had shared bases.
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Mean Median Range

Participants

% Share Code 10.0% - -

Team Size 1.34 1 1-18

Num. Contests 2.59 1 1-104

Site Points 2,830 483 52 - 3.0-10°
Contest Points 819 372 52.0 - 6.7-104
Contests

Restricted Teams 20.0% - -
Reward Quantity $32K $25K $250 - $100K

Data Size 7,962MB 101MB 1 - 88,289MB
Contest Length 72 days 67 days 39 - 160 days
Num. Participants 1,589 1,214 407 - 5,696
Num. Forks 233 223 0- 758
% Improvement
Top Solution 12.8% 0.3% 0 - 270%
Median Solution — 22.1% 3.2% 0 - 214%
Kernels
Kernel Forked 27.5% - -
Community Rating 1.70 0 0-157
Branch Size 2.05 1 1-65

Table 1. Descriptive statistics.

by term frequency-inverse document frequency (tf-idf). Using this set of dimensions we then
computed cosine similarity between pairs of kernels. We took the inverse as a measure of
distance between two kernels.

5 RESULTS
5.1 Research Question 1: Who shares code?

Contest participants face a trade-off between cooperation and competition, in which they
can choose to cooperate without competing, compete without cooperating, or do a mix
of both. We predicted that individual differences would influence the trade-off and lead
some individuals to be more likely to share code. Overall 10% of participants shared code
during a contest (see Table 1). We performed two mixed-effects logistic regression models
to predict which contest participants were more likely to share code during the first and
second halves of the contest (see Table 2). The contest ID was included as a random effect,
to control for within-contest differences. Some participants had been active on the site longer
and had more opportunities to accumulate site points, we included the number of contests
as covariate to control for experience on the site. For the second model we also included
activity in the first half as control variables. We considered quadratic effects for individual
performance measures.

We predicted that participants who were performing better on the site and in the contest
would be more secretive and thus less likely to share code. Contrary to our prediction
individuals who had accumulated more points on the site at the start of the contest were
more likely to share code. There was a positive relationship between site points and code
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Model 1 Model 2
Shared Code Shared Code
15t Half 2nd Half
Coef. SE Coef. SE
Intercept -3.44 0.16 -2.79 0.12
Team Size -0.039 0.02 -0.068*  0.029
Site Points 0.064*** 0.0066 0.041*** 0.0067
Contest Points - - 2.11%*¥* (.42

Contest Points? - - -0.14%*%*  0.030

Num Contests 0.015%** 0.0024 0.0022 0.0029

Shared Code - - 1.92*¥**  0.065

Submitted Code - -8.65%FF  1.46
Table 2. Mixed effects logistic regression models with 39,725 observations and 25 groups. Model 1
and Model 2 display the effect of participant performance and team size on sharing code in the first
and second half of the contest respectively. Predictors used in Model 2 (contest points, shared code,
submitted code) were calculated based on the first half of the contest only. * p < 0.05, ** p < 0.01,
*** p < 0.001

sharing in the first and second halves of the contest®. Partially in support and partially in
contradiction with our prediction, individuals who were doing well in the contest, but not at
the very top, were the most likely to share code (Figure 3). This is evidenced by a quadratic
relationship between contest points in the first half and sharing code in the second half of
the contest. One explanation of these results is that individuals who are doing better on the
site and within a contest are more motivated to share code.

However, individuals who are doing the very best in a contest hold back code. The top
%% of individuals in a contest shared code at rates similar to individuals performing in
the bottom half of the contest (i.e. 50 percentile and below) and at half the rate of that
of those in the 80th-90th percentile (~ 4% vs. 8%). These individuals have the most to
lose from sharing the code that has put them ahead of everyone else. These results suggest
skilled individuals make context-sensitive choices about whether or not to collaborate at a
community-level based on their performance in a contest, rather than displaying a static
predisposition toward competition over cooperation.

We also predicted that some participants, such as those who had fewer opportunities to
collaborate within a team, would be more likely to share code as a way to gain the benefits
of collaboration. Though team size was unrelated to sharing code during the first half of
a contest, we did find a negative relationship with code sharing code during the second
half. This (partially) supports our prediction, suggesting that individuals who work alone
or in smaller teams are more likely to share code in the second half of the contest. When
individuals cannot collaborate as much within a team, they may resort to collaborating with
the community at large.

5.2 Research Question 2: How does the design of contests affect code sharing?

Contests on Kaggle vary in their rules. For example, they offered different amounts of prize
money, ranging from $250 to $100,000; they varied in duration from one month to nearly 6
months; they required the analysis of data of very different sizes; and 20% restricted team

6The quadratic effect of site points was not significant so it was dropped from the model to improve fit.
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Fig. 3. The relationship between contest participants’s points in the first half of a contest and their
likelihood of sharing code in the second half of the same contest.

size (Table 1). We predicted that differences in contest design would shift the trade-off
between cooperation and competition, and between sharing and secrecy, such that some
designs would be associated with more code sharing. Using the sample of 25 contests, we
built two linear regression models, one predicting what percentage of users shared code
during a contest and the other predicting the magnitude of collaboration as indicated by
the amount of modified code (Table 3). The contest design characteristics did not heavily
covary with each other, correlations among characteristics ranged from non-significant to
small (r = 0 to 0.37).

We predicted that as individual incentives to win (i.e., monetary rewards) increased, there
would be less code sharing because there would be a greater opportunity cost to sharing. We
found no relationship between the prize amounts and the percentage of users who shared
code or the degree of collaboration. Since so few individuals win prizes, and the people
sharing code are less likely to be the prize winners, the prize amount does not seem to affect
sharing behavior.

We also expected that as it became more difficult to compete individually or as a small team
there would be more code sharing because there would be more to gain from collaborating
as a community. We found that shorter contests were associated with a greater percentage
of users sharing code and that there was more total collaboration for contests that restricted
team size. The size of the data to be analyzed was not associated with differences in sharing or
collaboration. Given more time pressure, individuals may see more benefit to collaborating
by getting feedback on their code from the community. Similarly, in contests in which
participants cannot work in teams or can only work in much smaller teams individuals do
not have as many opportunities to collaborate within their team, thus more collaboration
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% Users Num. Forks
Shared Code
Coef. SE Coef. SE

Intercept 0.11 0.06 222.2 163.6
Restricted Teams  0.009 0.018 102.7* 44.5
Prize Amount 0.003 0.004 10.2 12.4
Size Data 0.002 0.002 -11.0 7.0
Contest Length -0.0009* 0.0003 -1.01 0.86
Num. Participants - - 0.11%** 0.018
Adj. R? 0.15 0.78

Table 3. Linear regression models predicting the effect of contest design effects on the percentage of
contest participants who shared code and the degree of collaboration as indicated by the quantity of
forked code. The total number of contest participants was included in the second model to control for
the popularity of the contest. * p < 0.05, ** p < 0.01, *** p < 0.001

and sharing may happen outside of teams among the community at large. Together these
results suggest that some contest design characteristics that incentivize cooperation and
lead to more code sharing and collaboration.

5.3 Research Question 3: Does code sharing affect individual and collective
performance in contests?

Sharing code may benefit individuals by providing opportunities for individuals to get
feedback, adopt successful approaches, combine approaches and learn from others. We inves-
tigated the effect of sharing code on an individual’s short-term and long-term performance.
We built a mixed-effect negative binomial regression model to test the effect of sharing code
on an individual’s final points in a contest. We included a random effect for the contest ID
and controlled for individuals’s performance half way through the contest. The model shows
that sharing code is associated with doing better in the contest even after controlling for
early performance (Table 4, Model 1).

Similarly we build a negative binomial regression model to test the effect of sharing code
on an individual’s most recent cumulative points on the site, controlling for their performance
in their first contest and the total number of contests that they had entered”. Model 2 shows
that sharing code in at least one contest is associated with higher long-term performance on
the site even after controlling for early performance and overall experience (Table 4). Both
of these results suggest that sharing code is associated with better individual short-term
performance in a contest and long-term performance over many contests.

There is greater potential for the spread of the best solutions, improvement on the best
approaches, and integration of approaches when more individuals share code in a contest. We
hypothesized that more code sharing would be associated with better collective performance.
We examined collective performance in two ways, the degree to which the best scoring
submission improved from the midpoint to the end of a contest and the degree to which
the median scores improved from the midpoint to the end of a contest. To avoid potential
confounding effects of individuals entering a contest because more code was shared we
limited the analysis to individuals and teams who had participated from the beginning of

"In order to control for the effect of early performance on later performance we limited our analysis to
individuals who had competed in at least two contests
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the contest®. We found that there was no association between the proportion of users who
shared code and the percent improvement in the top score’ (Table 4, Model 3).

When we examined the effect of more users sharing code on average performance, we found
a significant relationship in the opposite direction (Table 4, Model 4). A closer examination
of the data showed that this counterintuitive result was due to an unusual contest in which
none of the early contestants shared code. In a model without this outlier, there was no
longer a relationship between the percentage of users who shared code and improvement in
average performance (Coef = -0.53, SE = 1.98, p = 0.79). Thus, the effect of code sharing
on average performance is inconclusive for this relatively small data set.

Code sharing does not appear to raise average or top performance in a contest. This result
is consistent with our finding that individuals that are doing the best in a contest are less
likely to participate in sharing code. In addition, individuals who do share code may not be
sharing their best solutions. The very best solutions and approaches may stay hidden and
therefore do not have a chance to be improved upon or combined.

5.4 Research Question 4: What code gets modified?

Sharing code can lead to cumulative innovation, in which the community improves, combines,
and builds on shared code. Figure 2 shows some examples of code branches that participants
have created on Kaggle by forking code. To better understand what code attracts modification
and innovation, we applied principles from Podolny and Stuart’s [23] study of cumulative
innovation using patent data.

First, we predicted that code would be more likely to attract modification if it was written
by higher ranked participants and was given a higher community rating because these
markers suggest greater legitimacy. Table 5 presents the results of mixed effects logistic
regression models using attributes about kernels shared in the first half of the contest to
predict whether a kernel is forked in the second half of a contest'’. We included a random
effect for the contest ID. Model 1 shows there is no significant relationship between a
kernel author’s standing either on the site or in the contest and whether a kernel attracts
modification. There is a significant positive relationship between a kernel’s community rating
and its likelihood of being modified. Our results suggest that unlike Podolny and Stuart’s
[23] findings, participants are not using author attributes to judge legitimacy. Instead they
are using community ratings, presumably because pooled ratings are perceived by the crowd
as a better measure of legitimacy and code quality.

Second, we predicted that kernels that were more prototypical would attract modification
because they would be more accessible and thus explored first. We computed the average
distance between each kernel and the set of other base kernels shared in the earlier contests.
Model 1 shows that this distance from the code base is negatively associated with the
likelihood that a kernel is modified (Table 5). In other words, kernels that are more unique
are less likely to be modified than kernels that are similar to existing code. These findings
confirm the second prediction and are in line with findings from Podolny and Stuart [23].

Finally, we predicted that kernels that had only inspired a narrow set of modifications
early on would be less likely to attract more modifications later. We measured the average

8However, the results do not change if we analyze all individuals and teams who participated in a contest.
9The model presented in Table 4 omits one contest in which there was 6x1018% improvement, an extreme
outlier, the results are the same when regression is performed on all contests including this outlier.

10We consider all forks in a branch family (forks, forks of forks, etc.) to be modifications of a base kernel.
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Model 1: Individual Short-Term Performance

Contest Points Coef. SE
Intercept 6.62 0.11
Shared Code 0.23%%* 0.015

Contest Points 15% Half (.08%** 0.001

Model 2: Individual Long-Term Performance

Site Points Coef. SE
Intercept 7.61 0.017
Shared Code 0.12%** 0.03
Site Points 1%% Contest 0.00004*** 0.000
Num. Contests 0.01%** 0.002

Model 3: Collective Top Performance

% Improvement Coef. SE
Intercept 0.29 0.32
% Users Shared Code  -1.66 3.02

Model 4: Collective Median Performance

% Improvement Coef. SE
Intercept 0.85 0.26
% Users Shared Code  -6.23* 2.40

Table 4. Models 1 and 2 display the effect of sharing code on individual performance in short and
long term respectively, controlling for early performance. Model 1 is a mixed effects negative binomial
regression model predicting participants’s final contest performance controlling for contest performance
in the first half with contest ID as a random effect (39,725 observations and 25 groups). Model 2
is a negative binomial regression model predicting participants’s total cumulative points on the site
controlling for their performance in their first contest (df = 4866). Model 3 and 4 are linear regression
models predicting percentage improvement in maximum and median contest submission scores from the
midpoint to the end of a contest respectively based on the proportion of users who shared code (Model
3 F(1,22) = 0.30, p = 0.59; Model 4 F(1,23) = 6.71, p = 0.02, Adj. R = 0.19). * p < 0.05, ** p <
0.01, *** p < 0.001

distance between a kernel and its modifications during the first half of the contest''. Model 2
shows that that there was a positive association between the average distance within a code
branch and the likelihood of the branch attracting a new modification in the second half
of the contest. We argue that code that has already produced more distant modifications
has more innovation potential because there is more to exploit than code that has at most
produced a narrow set of derivative modifications. Our analysis for Model 2 controlled
for branch size, and, unsurprisingly, we found that code that had already attracted more
modification in the first half of a contest was more likely to attract modification in the
second half of a contest.

1A second model had to be used for the third prediction because analysis was done on a smaller sample of
those kernels that had already inspired forks in the first half of a contest.
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Kernel Forked 2" Half

Model 1 Model 2
Coef. SE Coef. SE
Intercept 5.19 1.35 -1.83 0.31
Kernel Author’s
Site Points -0.000 0.000 - -

Contest Points 1%¢  -0.000 0.000 - -

Community Rating 0.043%** 0.008 - -

Code Base Distance -6.83*** 1.45 - -

Branch Distance - - 1.47*%% 043

Branch Size 15¢ - - 0.39%%* 0.07
Table 5. Mixed effects logistic regression models testing the effect of kernel characteristics on whether
the kernel branch gets expanded in the second half of the contest. Model 1 tests the effect of markers of
kernel quality and the average distance between a kernel and the established code base on whether the
branch is expanded (1,599 observations, 22 groups). Model 2 tests the effect of the average distance
between a kernel and its forks on whether the branch is expanded (271 observations, 24 groups). * p <
0.05, ** p < 0.01, *** p < 0.001

6 DISCUSSION

Open innovation contests which support community-level collaboration combine two pow-
erful forces for innovation — competition among participants to find the best solution and
cumulative innovation through sharing, combining, and integrating solutions. However, they
create a tension between sharing and secrecy. The goal of this research was to understand
if collaboration could thrive in highly competitive innovation contests. Through four ex-
ploratory questions we investigated community-level collaboration on Kaggle in the context
of this tension. This study complements and extends three earlier qualitative studies which
examined community-level collaboration in open innovation contests [9, 15, 19].

We expected that the competitive nature of innovation contests might inhibit collaboration
and that the degree to which collaboration was inhibited might be moderated by the contest’s
design. We found only 10% of individuals chose to share code during contests on Kaggle and
that individuals who were performing the very best in a contest were less likely to share
code than similar peers. This is in line with previous research which suggested that some
individuals in contests chose to work collaboratively and competitively, while others chose
only to work competitively [9, 19]. This study complements prior findings by estimating
at what rate individuals choose to collaborate and identifying which type of individuals
collaborate. We suspect that there was not more collaboration, and in particular a reduction
in relative collaboration from the very top performers in a contest, because individuals
wanted to keep code secret to perform better than others in the contests. This finding reflects
the general sentiment about sharing code expressed by one user “one of the common critiques
of the Scripts is that they allow people to achieve high leaderboard positions with very little
effort” 1. We also examined how contest design affected collaboration and found that contests
that restricted team size had more code sharing. We conjecture that when within-team
collaboration is not available participants are more likely to be willing to sacrifice secrecy to
gain the benefits of collaborating with the community. These results suggest that there is
an unrealized potential for more collaboration. Future work, should explore other ways to

2https://www.kaggle.com/dvasyukova/scripty-mcscriptface-the-lazy-kaggler
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alter contest design to reduce the potentially inhibitive effect of competition and promote
community-level collaboration.

Based on prior work on a variety of other online platforms collaboration was expected to
be individually and collectively beneficial when it did occur (e.g. [8, 21, 25]). We found that
individuals performed better in the short-term and long-term when they collaborated, but
that there was no association between collaboration and community level performance. This
latter finding is in contrast to [8]. One major difference between contests on Kaggle and [8]
which showed that sharing code could increase performance through cumulative innovation
is that on Kaggle users decide whether or not to share code where as in the other study
all submitted code was automatically shared. We suspect that the lack of more extensive
code sharing on Kaggle, particularly by the top performers in the contest, meant that the
best code was not shared during contests on Kaggle stifling the potential for cumulative
innovation. This finding about collective performance suggests that there is an untapped
potential for better collaboration that may necessitate sharing of specific code.

One of the largest potential benefits of sharing code is cumulative innovation, in which
individuals share, combine, integrate, and build from each others’s work [8]. Gulley and
Lakhani [17] find that more collective knowledge is created when individuals write more novel
code and recombine borrowed code with novel code. On Kaggle, we observed that shared
code was often modified by others. We took research on how patent citation networks grow,
an active setting for cumulative innovation, and tested whether there were similar patterns
in how code evolved on Kaggle. Code evolved on Kaggle in ways that are consistent with how
patent citation networks grow. We found that code that was likely seen as more legitimate,
accessible, and exploitable was modified more often. However, promoting modification of
code may not be enough to generate better code, new solutions, or substantial improvements
over existing solutions. Hill and Monroy-Hernandez [18] found in studying remixing on the
Scratch online community that there was a trade-off between the quality and quantity of
remixes. The factors that promote more remixes, were the opposite of those that promoted
more original remixes. For example, they found that projects that were written by a more
prominent author were more likely to be remixed, but that the remixes were less original.
The way we observe code evolving on Kaggle may not necessarily be beneficial in terms of
producing valuable code that improves the top solutions. Future research is needed to better
understand how modifications alter original code, whether modifications improve original
code, and whether modifications are instrumental to final solutions submitted to contests.

In this study we found that competitive-collaborative tension was a useful framework
for understanding user behavior, the effect of contest design on behavior, and collaborative
processes. This framework can enhance existing research on collaboration in open innovation
platforms and be used to better design such contests.

7 DESIGN IMPLICATIONS

Organizations hosting contests have a vested interest in getting the best possible solutions to
their problems regardless of how those solutions are produced. Prior work on open innovation
suggests greater openness and collaboration should lead to the best solutions. However, we
argue based on our results that the competitive nature of innovation contests may inhibit
this type of open collaboration. Thus, we recommend that platforms take steps to design
contests to promote more openness, sharing, and collaboration, particularly from the top
performing participants. There are a few approaches platforms could take. They could set up
the platform so all code was automatically shared or shared by default (e.g. [8]); they could
incentivize collaboration, such as by removing other more private methods of collaboration
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like competing as a team; or they could reduce the competitive nature of contests, such as
by removing leaderboards that show individuals rankings during the contest. Future work
is needed to determine if any of these would be effective without causing other adverse
consequences. These same design implications are likely to benefit the platform as well as
long as they do not drive away users.

The results of this study suggest that individuals may improve in their short-term and long-
term performance when they share code. Yet, individuals on Kaggle often have reservations
about sharing code because of how others may use that code (“I can see why people ...
would be frustrated about being pushed down in the ratings by the script chasers [users
who copy and submit shared code without modification]”'?). There are two ways platforms
could better support individuals. First, they could reinforce intrinsic motivations which are
likely to underlie collaboration, such as learning, helping, or belonging to the community.
Second, they could provide extrinsic motivations for sharing code, such as implementing
an attribution system that recognized performance gains from shared code. Kaggle has
some rewards for sharing code (e.g. separate leaderboard, badges) these may not be enough
because they are separate from rewards associated with contest outcomes. An attribution
system with prizes awarded for final solutions as well as incremental contributions toward
the winning solution could improve incentives to share for top contestants and minimize the
conflict between collaboration and competition. For example, the use of impact factor metrics,
like the h-index, for career advancement in academia encourages cumulative innovation by
giving more credit to scholars whose ideas have been incorporated into others’ work.

8 LIMITATIONS AND FUTURE WORK

In this study we observed participant behavior on Kaggle. One limitation of an observational
study is that we do not have direct insight into participants’ mental state, motivations,
or perceptions. We proposed several explanations for our observations, such as the very
top contestants share less code than would be expected because they do not want to give
away their potentially winning solutions. While the observations of behaviors themselves
are relevant to the success of collaboration on Kaggle, our explanations of these behaviors
may not be correct. This study would be strengthened by future work which uses surveys of
participants to match participants’ behavior with reasons for sharing or withholding code.

Another limitation of a purely observational study is we cannot determine causality. We
found several associations between early behavior and subsequent outcomes, such as early
ranking in a contest affects subsequent code sharing and sharing code in one contest affects
subsequent performance on the site. By dividing the data into time periods we partially,
but not fully, control for the directionality of effects. Future work is needed using more
sophisticated quasi-experimental designs and actual experiments to determine directionality
and the underlying mechanisms for these effects.

In this study we focused on sharing rather than using shared code. Ultimately, both
sharing and using shared code are important in studying cumulative innovation and the
impact of shared code on performance, which are both critical areas of future work to assess
the value of community-level collaboration. Kaggle did not provide enough information in
its database to assess how shared code is used. It does not provide records of who views
shared code or records of all submitted code. In exceedingly rare cases individuals submit
shared code directly as a submission (and these were recorded), however we suspect these
records undercount the actual use of shared code. Future work using interviews and surveys

Bhttps://www.kaggle.com/dvasyukova/scripty-mcscriptface-the-lazy-kaggler
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is needed to understand the use of shared code and to directly measure how usage impacts
performance.

Finally, we examined community-level collaboration on only one site, Kaggle, which hosts
a specific type of contest. In many ways contests on Kaggle are similar in design to most
other innovation contests—prizes are awarded only to the top few contestants; contestants
can share solutions or partial work; and individuals participate for a variety of reasons
some extrinsic and some intrinsic. There are two key differences between Kaggle and some
other innovation contests that may affect the generalizability of this study’s results. First,
on Kaggle there is an objective measure of performance that is displayed during contests.
This is in contrast to other contests in which performance is more subjective (e.g. design
contests) and there is no clear rankings of users or solutions during the contest because
judges determine who wins at the end. Second, on Kaggle sharing code is optional; this is
very different from contests and platforms that make all submitted code automatically visible
to everyone (e.g. [8, 17]). More research is needed to study community-level collaboration
on a variety of platforms and types of contests.

9 CONCLUSION

Many innovation contest platforms, like Kaggle, support community-wide collaboration.
We found that around 10% of users shared code during contests on Kaggle. Allowing
community-level collaboration creates a tension between sharing and secrecy, such that
people preferred collaborating within teams rather than at a community level and the very
top level contestants collaborated less. As a result, we observed that sharing code helped
individuals improve, but did not help improve the winning solutions. Besides providing
individual benefits, the potential benefit of community-wide collaboration is cumulative
innovation, in which individuals might share, combine, integrate and build on each others’s
code to provide better winning solutions than individuals or teams could alone. In observing
how code evolved we saw similar patterns of collaboration as has been observed in other
cumulative innovation settings. Future research should explore the process of collaboration
in more detail and test alternative platform designs that might encourage more code sharing
particularly of the best solutions from top contestants. Findings from this and future
studies should be synthesized into design insights that will help ease the tension between
collaboration and competition in online platforms like Kaggle, realizing the full value of
open innovation contests.
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